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Abstract. We study the order of affine and linear invariant families
of planar harmonic mappings in the unit disk and determine the order
of the family of mappings with bounded Schwarzian norm. The result
shows that finding the order of the class SH of univalent harmonic map-
pings can be formulated as a question about Schwarzian norm and, in
particular, our result shows consistency between the conjectured order
of SH and the Schwarzian norm of the harmonic Koebe function.

Introduction

The purpose of this paper is to study certain affine and linear invariant
families of planar harmonic mappings defined in the unit disk D, with a
special interest in the family of mappings with bounded Schwarzian norm.
The fundamental aspects of linear invariant families of harmonic mappings
were studied in [20], while linear invariant families of holomorphic mappings
were introduced by Pommerenke in [17]. Several important properties of
such families of either holomorphic or harmonic mappings depend on its
order, namely the optimal bound for the second Taylor coefficient of the
holomorphic part of the mappings considered. The order of the class of
holomorphic mappings with bounded Schwarzian norm can be determined
by means of a variational method that gives a relation for the second and
third order coefficients of an extremal mapping [17]. Our motivation in this
paper stems from the still unresolved problem of determining the order of the
family SH of normalized univalent harmonic mappings. In this direction, we
are able to apply the variational approach that leads to the Marty relations
to determine the order of the family of harmonic mappings with a given
bound for the Schwarzian derivative. This seems relevant because the order
of the class S of normalized univalent holomorphic mappings can be derived
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from the above coefficient relation and the well-known Schwarzian bound
for the class. Our result shows consistency between the conjectured values
for order in SH and in S0

H and the Schwarzian norm of the harmonic Koebe
function, a natural candidate for maximizing the Schwarzian norm in S0

H .
The hyperbolic norm of the dilatations of the harmonic mappings enter in
our analysis in an unexpected way, and turn out to be intimately related to
the order of the family. The construction of an extremal mapping for our
main result is not elementary and depends on a subtle interplay between the
second coefficient and the hyperbolic norm. In another direction, we also
establish the sharp bound for the Schwarzian norm of certain important
families of harmonic mappings for which the order was already known.

The Schwarzian derivative of a locally univalent analytic function on a
domain in the complex plane is

Sf =

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

.

The role of Sf in the study of univalence, distortion, and extensions of f
has been developed extensively in the literature (see, e.g., [2, 6, 12, 15]).
Two of the main properties of the Schwarzian derivative are the following:

i) Sf = 0 if and only if f is a Möbius transformation.
ii) Whenever the composition f ◦g is well-defined, the chain rule holds:

S(f ◦ g) = (Sf ◦ g) · (g′)2 + Sg .

In the case when f is locally univalent in the unit disk D, the Schwarzian
norm

∥Sf∥ = sup
|z|<1

|Sf(z)| · (1− |z|2)2

turns out to be invariant under post-compositions with automorphisms σ of
the disk. In other words, for any such functions f and σ,

∥S(f ◦ σ)∥ = ∥Sf∥ .

In [17, 18] Pommerenke studied and carried through a detailed analysis of
the so-called linear invariant families ; that is, families of locally univalent
holomorphic functions f in the unit disk normalized by the conditions f(0) =
1− f ′(0) = 0 and which are closed under the transformation

Fζ(z) =

f

(
ζ + z

1 + ζz

)
− f(ζ)

(1− |ζ|2)f ′(ζ)
, ζ ∈ D.

Several important properties, such as growth, covering, and distortion are
determined by the order of a linear invariant family F defined by

α(F) = sup
f∈F

a2(f) =
1

2
sup
f∈F

|f ′′(0)| .



AFFINE AND LINEAR INVARIANT FAMILIES 3

For example, the order of the important class S of normalized univalent
mappings in D is 2. We refer the reader to the books [4] or [19] for more
details related to the class S.

In [17], Pommerenke proves the following theorem regarding the linear
invariant family Hλ of normalized locally univalent analytic functions f in
the unit disk with ∥Sf∥ ≤ λ.

Theorem A. The order of the family Hλ is given by

α(Hλ) =

√
1 +

λ

2
.

It is a straightforward calculation to show that given λ ≥ 0, the function

(1) φa(z) =
1

2a

[(
1 + z

1− z

)a

− 1

]
, |z| < 1 , a =

√
λ

2
+ 1 ,

belongs to Hλ and satisfies

1

2
|φ′′

a(0)| =
√

1 +
λ

2
.

Whenever f ∈ S, its Schwarzian norm is bounded by 6. Therefore, S ⊂
H6 so that by Theorem A we get |a2| ≤ 2 for all f ∈ S, although the bound
will hold also for the non-univalent mappings in H6.

A planar harmonic mapping in a domain Ω ⊂ C is a complex-valued
function w = f(z) = u(z) + iv(z), z = x + iy, which is harmonic, that
is, ∆u = ∆v = 0. When Ω is simply connected, the mapping f has a
canonical decomposition f = h + g, where h and g are analytic in Ω. As
is usual, we call h the analytic part of f and g the co-analytic part of f .
The harmonic mapping f is analytic if and only if g is constant. Lewy [13]
proved that a harmonic mapping is locally univalent in a domain Ω if and
only if its Jacobian does not vanish. In terms of the canonical decomposition
f = h+ g, the Jacobian is given by |h′|2−|g′|2, and thus, a locally univalent
harmonic mapping in a simply connected domain Ω will be sense-preserving
or sense-reversing according to whether |h′| > |g′| or |g′| > |h′| in Ω. Note
that f = h+ g is sense-preserving in Ω if and only if h′ does not vanish and
the (second complex) dilatation ω = g′/h′ has the property that |ω| < 1 in
Ω. We refer the reader to the book by Duren [5] for an excellent exposition
of harmonic mappings.

Let F be a family of sense-preserving harmonic mappings f = h + g in
D, normalized with h(0) = g(0) = 0 and h′(0) = 1. The family is said to be
affine and linear invariant (AL family) if it closed under the two operations
of Koebe transform and affine change:

(2) Kζ(f)(z) =

f

(
z + ζ

1 + ζz

)
− f(ζ)

(1− |ζ|2)h′(ζ)
, |ζ| < 1 ,
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and

(3) Aε(f)(z) =
f(z)− εf(z)

1− εg′(0)
, |ε| < 1 .

Sheil-Small [20] offers an in depth study of affine and linear invariant families
F of harmonic mappings in D. The order of the AL family, given by

α(F) = sup
f∈F

|a2(f)| =
1

2
sup
f∈F

|h′′(0)| ,

plays once more a special role in the analysis.
A special example of affine and linear invariant family is the class SH

of (normalized) sense-preserving harmonic mappings which are univalent in
the unit disk. As it is usual, we use S0

H to denote the family of functions
f = h + g ∈ SH with g′(0) = 0. It is conjectured that the second Taylor
coefficient of the analytic part h of any function in S0

H is bounded by 5/2.
If this conjecture were true, we would obtain that the order of SH is equal
to 3. The analytic part of the so-called harmonic Koebe function K ∈ S0

H
(introduced by Clunie and Sheil-Small in [3]) has second coefficient equal to
5/2.

In [10], the authors introduce a definition for the Schwarzian derivative
Sf of locally univalent harmonic mappings, which serves as a complement to
the definition found in [1]. The requirement of the latter that the dilatation
be a square has been replaced in the former by the local univalence. In both
cases a chain rule is in order, which shows that for mappings in D the norm
||Sf || defined as before is invariant under automorphisms of the disk. But
only the Schwarzian Sf introduced in [10] is invariant under affine changes

af + bf , |a| ̸= |b|. As a result, the family Fλ of sense-preserving harmonic
mappings f = h+ g in D, with h(0) = g(0) = 0, h′(0) = 1 and ||Sf || ≤ λ, is
affine and linear invariant. We let F0

λ = {f ∈ Fλ : g
′(0) = 0}.

The hyperbolic norm of the dilatation ω of a sense-preserving harmonic
mapping in D is given by

∥ω∗∥ = sup
z∈D

|ω′(z)| · (1− |z|2)
1− |ω(z)|2

,

and will play a distinguished role in our analysis. Observe that ∥ω∗∥ ≤ 1
by Schwarz’s lemma. As we will show, only for λ ≥ 3/2 will there exist
a mapping in f ∈ Fλ with a dilatation of hyperbolic norm equal to 1.
Moreover, for λ < 3/2 the supremum of all hyperbolic norms of mappings
in Fλ will be strictly less than 1.

Let us denote by A0
λ (resp. Aλ) the set of admissible dilatations of func-

tions f ∈ F0
λ (resp. Fλ); i.e., ω ∈ A0

λ (or Aλ) if there exists a harmonic
mapping f = h+ g ∈ F0

λ (Fλ) with dilatation ω. The main purpose of this
article is to show the following generalization of Theorem A.
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Theorem 1. The order of Fλ is given by

α (Fλ) =

√
λ

2
+ 1 +

1

2
sup
f∈F0

λ

|g′′(0)|2 + 1

2
sup
f∈F0

λ

|g′′(0)|(4)

=

√
λ

2
+ 1 +

1

2
sup
ω∈Aλ

∥ω∗∥2 + 1

2
sup
ω∈Aλ

∥ω∗∥ .(5)

Furthermore,

1

2
sup
f∈F0

λ

|h′′(0)| =

√
λ

2
+ 1 +

1

2
sup
f∈F0

λ

|g′′(0)|2(6)

=

√
λ

2
+ 1 +

1

2
sup
ω∈A0

λ

|ω′(0)|2 .(7)

It was proved in [10] that the Schwarzian norm of the harmonic Koebe
function equals 19/2. For λ = 19/2 our result gives

1

2
sup
f∈F0

λ

|h′′(0)| = 5

2
,

which would show that the order of SH is equal to 3 provided the harmonic
Koebe function was extremal in the class for the Schwarzian norm.

1. Schwarzian derivative

Let f = h + g be a locally univalent harmonic mapping in a simply
connected domain Ω with dilatation ω = g′/h′. In [10], the Schwarzian
derivative Sf of such a function f was defined. If f is sense-preserving, Sf
is given by

(8) Sf = Sh+
ω

1− |ω|2

(
h′′

h′
ω′ − ω′′

)
− 3

2

(
ω′ ω

1− |ω|2

)2

.

Several properties of this operator are the following:

(i) Sf ≡ 0 if and only if f = αT + βT , where |α| ̸= |β| and T is a
Möbius transformation of the form

T (z) =
az + b

cz + d
, ad− bc ̸= 0 .

(ii) Whenever f is a sense-preserving harmonic mapping and ϕ is an
analytic function such that the composition f ◦ϕ is well-defined, the
Schwarzian derivative of f ◦ϕ can be computed using the chain rule

Sf◦ϕ = Sf (ϕ) · (ϕ′)2 + Sϕ .

(iii) For any affine mapping L(z) = az + bz with |a| ̸= |b|, we have that
SL◦f = Sf . Note that L is sense-preserving if and only if |b| < |a|.
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Consider now a sense-preserving harmonic mapping f in the unit disk.
Using the chain rule, we can see that for each z ∈ D

|Sf (z)| = |S(f◦σz)(0)| · (1− |z|2)2 ,

where σz is any automorphism of the unit disk with σz(0) = z. The
Schwarzian norm ∥Sf∥ of f is defined by

∥Sf∥ = sup
z∈D

|Sf (z)| · (1− |z|2)2 .

It is easy to check (using the chain rule again and the Schwarz-Pick
lemma) that ∥Sf◦σ∥ = ∥Sf∥ for any automorphism of the unit disk σ. For
further properties of Sf and the motivation for this definition, see [10].

2. Affine and Linear Invariant Families

Let SH denote the family of sense-preserving univalent harmonic map-
pings f = h + g on D normalized by h(0) = 0, h′(0) = 1, and g(0) = 0.
This family is affine and linear invariant. As usual, we use S0

H to denote the
subclass of functions in SH that satisfy the further normalization g′(0) = 0.
The family SH is normal and S0

H is compact (see [3] or [5]). Analogous
results are obtained when dealing with the families CH and C0

H of convex
harmonic mappings in SH and S0

H , respectively.

Other examples of AL families of sense-preserving harmonic mappings are
the stable harmonic univalent (SHU) and the stable harmonic convex (SHC)
classes. A function f = h+g ∈ SH is SHU (resp. SHC ) if h+λg is univalent
(convex) for every |λ| = 1. These classes are linear invariant, and also affine
because univalence or convexity are preserved under the affine changes Aε

as in (3). An important observation is that if the harmonic mapping f
has dilatation ω, then F = Aω(0)(f) will have a dilatation vanishing at the
origin.

It is easy to check that α(SHU)= 2 and α(SHC)= 1 (see [8]). In the next
theorem, we obtain sharp bounds for the Schwarzian norm of functions in
these classes.

Theorem 2. Let f = h+g be a locally univalent harmonic mapping defined
in D.

(i) If f is a SHU mapping, then ∥Sf∥ ≤ 6.
(ii) If f is a SHC mapping, then ∥Sf∥ ≤ 2.

Both constants are sharp.

Proof. It was shown in [8] that if f = h+ g ∈ SHU , then h+ag is univalent
for all |a| < 1; in particular, h itself is univalent. Assume that there exists
f ∈ SHU with ∥Sf∥ > 6 and let ω be its dilatation. Then, there is a
point ζ ∈ D such that |Sf (ζ)| · (1− |ζ|2)2 > 6. Using the chain rule for the
Schwarzian derivative and the affine invariance, we see that

(9) |SAωζ(0)
(Kζ(f))(0)| = |Sf (ζ)| · (1− |ζ|2)2 > 6 ,
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where Kζ is the transformation defined by (2), ωζ is the dilatation of the
function Kζ(f), and Aωζ(0) is as in (3). Since the dilatation of Kζ(f) at

the origin is ωζ(0), we have that the dilatation of Aωζ(0)(Kζ(f)) fixes the

origin. Let H denote the (univalent) analytic part of Aωζ(0)(Kζ(f)); keeping

in mind the definition (8) for the Schwarzian derivative, we see from (9) that

|SAωζ(0)
(Kζ(f))(0)| = |SH(0)| > 6 ,

which contradicts the univalence of H. This proves statement (i). The proof
of (ii) follows the same argument, except for the fact that convex analytic
mappings have Schwarzian norm bounded by 2 [16].

To prove that both constants are sharp, it is enough to consider the
analytic functions

k(z) =
z

(1− z)2
and s(z) =

1

2
log

(
1 + z

1− z

)
that belong to the families of SHU and SHC mappings and have Schwarzian
norms ∥Sk∥ = 6 and ∥Ss∥ = 2, respectively. �

3. Admissible Dilatations

In this section, we review some of the properties of hyperbolic derivatives
of self-maps of the unit disk and determine the relation between hyperbolic
norms of admissible dilatations in Fλ and the parameter λ itself.

3.1. The hyperbolic derivative. Let ω be a self-map of the unit disk,
this is, an analytic function in D with ω(D) ⊂ D. The hyperbolic derivative
of such function ω is

ω∗(z) =
ω′(z) · (1− |z|2)

1− |ω(z)|2
, z ∈ D .

From Schwarz’s lemma we see that |ω∗| ≤ 1 in D, and that if there exists
z0 ∈ D with |ω∗(z0)| = 1, then ω is an automorphism of the unit disk
and |ω∗| ≡ 1 in D. Of course, there are self-maps of D with hyperbolic
norm equal to 1 which are not automorphisms. There are examples such
as ω(z) = (z + 1)/2, but also, every finite Blaschke product has hyperbolic
norm equal to 1 [7]. See also [14] for other examples.

Given two self-maps ω and φ of the unit disk, the chain rule for the
hyperbolic derivative holds:

(φ ◦ ω)∗ (z) = φ∗(ω(z)) · ω∗(z) .

In particular, if σ is an automorphism of D, then |(σ ◦ ω)∗| ≡ |ω∗| in the
unit disk, hence ∥(σ ◦ ω)∗∥ = ∥ω∥.

Just like in [9], the so-called lens-maps ℓα will be of particular interest.
For 0 < α < 1, the mapping ℓα is defined by

(10) ℓα(z) =
ℓ(z)α − 1

ℓ(z)α + 1
,
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where ℓ(z) = (1 + z)/(1 − z). The hyperbolic norm of ℓα was computed in
[11] to be ∥ℓ∗α∥ = α. Moreover, |ℓ∗α(r)| = α for all real numbers 0 ≤ r < 1.

3.2. Admissible dilatations and norms. Recall that we say that a self-
map ω of the unit disk belongs to the family of admissible dilatations A0

λ

if there exists f ∈ F0
λ with dilatation ω. For any such f and any α ∈ D,

the affine transformation fα = A−α(f) = f + αf ∈ Fλ. Its dilatation ωα is
given by

ωα = σα ◦ ω ,
where σα is the automorphism in the unit disk defined by

(11) σα(z) =
α+ z

1 + αz
, z ∈ D .

In other words, whenever ω ∈ A0
λ and α ∈ D, then σα ◦ ω ∈ Aλ.

On the other hand, if f ∈ Fλ that has dilatation ω satisfying ω(0) = α,
then

F =
f − αf

1− |α|2
∈ F0

λ ,

with a resulting new dilatation ωF = σ−1
α ◦ ω = σ−α ◦ ω. These relations

establish a correspondence between the families A0
λ and Aλ.

It is easy to verify that for any value of λ, there exists ω ∈ Aλ with
∥ω∗∥ = 0 (just consider the identity function I(z) = z in the unit disk which
belongs to Fλ for all λ ≥ 0). The following theorem characterizes the values
of λ for which a dilatation in Aλ can have hyperbolic norm 1.

Theorem 3. The following conditions are equivalent.

(i) λ ≥ 3/2.
(ii) There exists ω ∈ A0

λ with |ω′(0)| = 1.
(iii) The set {λ·I : |λ| = 1} is contained in A0

λ. In particular, the identity
function I is an admissible dilatation in F0

λ.
(iv) Every automorphism σ of the unit disk is an admissible dilatation in

Fλ.
(v) There exist ω ∈ Aλ with ∥ω∗∥ = 1.

Proof. The scheme of the proof is to show that (i) ⇒ (ii) ⇒ (iii) ⇒ (i).
Then we prove that (iii) ⇐⇒ (iv), and finally we see that (iv) ⇒ (v) ⇒ (ii).

To show that (i) ⇒ (ii), we consider the function f = z + 1
2z

2. Note that
the dilatation ω of f equals the identity function I so that ω′(0) = 1. Since

Sf (z) = − 3 z2

2 (1− |z|2)2
,

we have ∥Sf∥ = 3/2. Thus, f ∈ F0
λ for all λ ≥ 3/2 and (ii) holds.

Let us now check that (ii) ⇒ (iii). To do so, just note that given any
harmonic function f = h + g ∈ F0

λ with dilatation ω and any µ ∈ ∂D, the
functions fµ = h+µg belong to F0

λ as well since Sf = Sfµ for all such µ and
the dilatation ωµ of fµ is equal to ωµ(z) = µω(z) (which satisfies ωµ(0) = 0).
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Now, if we assume that there exists ω ∈ A0
λ with |ω′(0)| = 1 we have, by

the Schwarz lemma, that ω is a rotation of the disk (i.e. ω(z) = λz for some
|λ| = 1). Therefore, using those functions fµ we immediately get that (iii)
holds.

Suppose that (iii) is satisfied. This is, there is a function f = h+ g ∈ F0
λ

with dilatation ω = I. We are going to prove that λ ≥ 3/2. Indeed, we will
obtain a stronger result in view of inequality (16) below. More specifically,
we will see that (iii) implies that the order α(Fλ) of the family Fλ is 2 at
least, so that by (16) we obtain (i) (note that the supremum that appears
there equals 1 whenever I ∈ A0

λ) .
Using the affine invariance property of Fλ, we have that whenever f ∈

F0
λ, the function Fε = Aε(f) = f − εf ∈ Fλ for all ε ∈ D, where Aε

is the transformation defined in (3). The analytic part in the canonical
decomposition of Fε equals hε = h − εg so that h′ε(z) = h′(z) · (1 − εI).
Therefore, just applying the same arguments that appear in the proof of the
theorem on [5, p. 97], we get that for all z ∈ D

(12) |h′(z)| · |1− εz| ≥ (1− |z|)α(Fλ)−1

(1 + |z|)α(Fλ)+1

whenever ε < 1 and hence, for all |ε| ≤ 1. Thus given any z ̸= 0 in the unit
disk, we can choose ε = z/|z| to get from (12) that

|h′(z)| ≥ (1− |z|)α(Fλ)−2

(1 + |z|)α(Fλ)+1
,

an inequality that obviously works for z = 0. As a consequence, since h is
locally univalent in D, we see that the analytic function 1/h′ in the unit disk
satisfies

1

|h′(z)|
≤ (1 + |z|)α(Fλ)+1

(1− |z|)α(Fλ)−2
,

which implies, by the maximum modulus principle, that α(Fλ) ≥ 2 (oth-
erwise we would get 1/|h′(0)| < 1, which is absurd since h′(0) = 1). This
shows that (iii) ⇒ (i).

We continue with the proof of the theorem by showing that (iii) ⇔ (iv).
Note that since every rotation is an automorphism of the unit disk that
fixes the origin, only the implication (iii) ⇒ (iv) is needed to check the
equivalence between these two statements. Let us assume then that the set
{λI : |λ| = 1} ⊂ A0

λ. Then, we can use that Fλ is affine invariant and the
functions fµ defined above to see that for any α in the unit disk and any
λ, µ ∈ ∂D, the functions

µσα ◦ (λI) = µ · α+ λz

1 + αλz
= µλ · λα+ z

1 + λαz
∈ Aλ .
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In other words, for any |η| = 1 and any β ∈ D, the mappings

(13) η · β + z

1 + βz
∈ Aλ.

The Schwarz lemma says that any automorphism of the unit disk has the
form (13) so that (iv) holds.

Finally, we are show the equivalence between statements (iv) and (v).
Once more, only one of the implications in the equivalence is non-trivial
(recall that any automorphism of the unit disk has hyperbolic norm equal
to one). Concretely, we just need to see that (v) ⇒ (iv). Since at this point
we have proved that (i), (ii), (iii), and (iv) are equivalent, it suffices to check
that (v) ⇒ (ii). To do so, let ω ∈ Aλ have the property that ∥ω∗∥ = 1.
Then, by the definition of the hyperbolic norm, there exists a sequence of
points in the unit disk {zn}, say, such that

lim
n→∞

|ω∗(zn)| = 1.

The fact that ω ∈ Aλ means that there is a function f = h + g ∈ Fλ with
dilatation ω. Using the transformations Kzn and Aωn(0) defined by (2) and
(3), respectively, where ωn is the dilatation of Kzn(f), we obtain a sequence
of harmonic mappings

fn = Aωn(0)(Kzn(f))

with dilatations

γn = σ−ωn(0) ◦ ωn = σ−ωn(0) ◦ [λn · (ω ◦ σzn)] ,

where λn = h′(zn)/h′(zn) and σα is again the automorphism of D defined
by (11).

Note that γn(0) = 0, so that each element in the sequence fn ∈ F0
λ.

Moreover, a straightforward computation shows that we also have |γ′n(0)| =
|ω∗(zn)|.

Now, we argue as on [5, pp. 81-82] but in this case, instead of the argu-
ment principle, we use the fact that whenever fn → f0 uniformly on compact
subsets of D we have that for each z in the unit disk

Sfn(z) → Sf0(z) .

This shows that F0
λ is a normal and compact family. Thus, there exists a

subsequence (that we rename {fn} again) of the sequence {fn} that con-
verges to f0 ∈ F0

λ uniformly on compact subsets in the unit disk. The
dilatation γ0 of the limit function f0 is

γ0(z) = lim
n→∞

γn(z) ,

so that it satisfies

|γ′0(0)| =
∣∣∣ lim
n→∞

γ′n(0)
∣∣∣ = lim

n→∞
|ω∗(zn)| = 1 .

This proves that (v) ⇒ (ii) and finishes the proof of the theorem. �
From Theorems 1 and 3 we derive the following important corollary.
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Corollary 1. If λ ≥ 3/2 then

α (Fλ) =

√
λ

2
+

3

2
+

1

2

and
1

2
sup
f∈F0

λ

|h′′(0)| =
√
λ

2
+

3

2
.

Even though for λ < 3/2 we have been unable to determine the value of
supω∈Aλ

∥ω∗∥, one can rewrite Theorem 1 in the form

(14) sup
ω∈Aλ

∥ω∗∥ = −2α(Fλ) +
√

8α(Fλ)2 − 2λ− 4 .

4. Proof of the Main Theorem

We will divide the proof of Theorem 1 in three different parts.

4.1. A lemma. We begin by proving that (5) and (7) hold.

Lemma 1. For any positive real number λ,

(i)
sup

f=h+g∈F0
λ

|g′′(0)| = sup
ω∈A0

λ

|ω′(0)| .

(ii)
sup
ω∈A0

λ

|ω′(0)| = sup
ω∈A0

λ

∥ω∗∥ = sup
ω∈Aλ

∥ω∗∥ .

Proof. The proof of (i) is trivial: just recall that the dilatation ω of
f = h+ g ∈ F0

λ equals ω = g′/h′ and satisfies ω(0) = 0. Thus, g′ = ωh′ and
hence g′′(0) = ω′(0)h′(0) + ω(0)h′′(0) = ω′(0), since h′(0) = 1.

To prove (ii), take an arbitrary f = h + g ∈ F0
λ with dilatation ω. The

transformations (2) and (3) produce new functions that also belong to this
family. Concretely, given any such function f , we define the mappings

fζ = Aωζ(0)(Kζ(f)) = hζ + gζ , ζ ∈ D ,

where ωζ is the dilatation of Kζ(f). These mappings fζ belong to F0
λ and

have dilatations
γζ = σ−ωζ(0) ◦ ωζ ∈ A0

λ ,

where ωζ = λζ · (ω ◦σζ) for certain |λζ | = 1 and appropriate automorphisms
σα of the form (11). Since

|γ′ζ(0)| = |ω∗(ζ)|
and ζ is any arbitrary point in D, we conclude that the first equality in
(ii) holds. The second inequality is an easy consequence of the fact that
the correspondence between the families Aλ and A0

λ is realized using pre-
composition with automorphisms of the unit disk (an operation that pre-
serves the hyperbolic norm). �
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4.2. Upper bounds. The aim of this section is to prove the following in-
equalities:

(15)
1

2
sup
f∈F0

λ

|h′′(0)| ≤
√
λ

2
+ 1 +

1

2
sup
ω∈A0

λ

|ω′(0)|2

and

(16) α (Fλ) ≤
√
λ

2
+ 1 +

1

2
sup
ω∈Aλ

∥ω∗∥2 + 1

2
sup
ω∈Aλ

∥ω∗∥ .

To prove (15), let us agree with the notation

S =
1

2
sup
f∈F0

λ

|h′′(0)| .

Given f ∈ F0
λ, the function F defined by F (z) = λf(λz) ∈ F0

λ as well.
Therefore, we see that

S =
1

2
sup
f∈F0

λ

Re {h′′(0)} .

As it was mentioned in the proof of Theorem 3, the family F0
λ is normal

and compact. Therefore, there exists a function f0 = h0 + g0 in F0
λ with

dilatation ω0, where

h0(z) = z + a2z
2 + a3z

3 + . . . , g0(z) = b2z
2 + b3z

3 + . . . ,

such that

Re {a2} = |a2| = S .

Take an arbitrary point ζ ∈ D and consider, once more, the transforma-
tions (2) and (3) to produce the family

Fζ = Aωζ(0)(Kζ(f)) = h∗ζ + g∗ζ

of functions that are in F0
λ.

As it is shown on [5, p.102], the Taylor coefficients a∗n of h∗ζ satisfy

a∗n = an + [(n+ 1)an+1 − 2a2an]ζ − [2b2bn + (n− 1)an−1]ζ + o(|ζ|) .
Then, we get that

(17) 3a3 − 2a22 − 2|b2|2 − 1 = 0 .

Now, using the equations Sf0(0) = Sh0(0) = 6(a3 − a22), we have by
(17) that Re {Sf0(0)} = 4|b22| + 2 − 2Re {a22}. Hence, bearing in mind S =
Re {a2} = |a2|, we obtain

S2 = |a2|2 ≤
1

2
|Sf0(0)|+ 1 + 2|b2|2

≤ λ

2
+ 1 +

1

2
sup
ω∈A0

λ

|ω′(0)|2.
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This proves (15). To show that (16) holds we can argue as follows. Take
any function f = h + g ∈ Fλ with dilatation ω and consider the affine
transformation Aω(0) as in (3) to get the function

F = Aω(0)(f) = H +G ∈ F0
λ .

Note that f = F + ω(0)F . Thus, the analytic part of f equals H + ω(0)G.
Using also that ω(D) ⊂ D, and Lemma 1, we get

|h′′(0)| = |H ′′(0) + ω(0)G′′(0)| ≤ 2S + |ω(0)| sup
f∈F0

λ

|g′′(0)|

≤ 2S + sup
ω∈Aλ

∥ω∗∥ ,

which gives (16).

4.3. Equalities. In order finish the proof of Theorem 1, we will show that
(15) and (16) are actual equalities.

To see that equality holds in (15), we will exhibit a function f0 = h0+g0 ∈
F0
λ with dilatation ω0 satisfying the following properties:

ω′
0(0) = sup

ω∈A0
λ

∥ω∗∥ and h′′0(0) = 2 ·
√
λ

2
+ 1 + ω′

0(0) .

This will show that (6) holds. Furthermore, for any 0 < r < 1, the mappings
fr = f0 + rf0 ∈ Fλ and have analytic parts hr = h0 + rg0, for which

h′′r(0) = h′′0(0) + rg′′0(0) = sup
f∈F0

λ

|h′′(0)|+ rω′
0(0)

= sup
f∈F0

λ

|h′′(0)|+ r sup
ω∈A0

λ

∥ω∗∥

→ sup
f∈F0

λ

|h′′(0)|+ sup
ω∈A0

λ

∥ω∗∥ ,

as r → 1−. This shows that equality also holds in (16), proving thus (4).
The function f0 will be constructed in the next, final section.

5. The mapping f0

Given λ ≥ 0, let us denote by Rλ = supω∈Aλ
∥ω∗∥. If λ = 0, then by [10,

Cor. 2] every function in Fλ has the form h+ ah, where a ∈ D and

h(z) =
z

1 + bz
, |b| < 1 .

Hence Rλ = 0. We now analyze the cases λ > 0.
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5.1. Harmonic mappings in F0
λ when λ > 0. By Theorem 3, we have

that λ ≥ 3/2 if and only if Rλ = 1. Equation (14) gives the exact value of
Rλ in terms of λ and α(Fλ). The following example allows us to estimate
the value of Rλ in terms of λ for 0 < λ < 3/2.

Given 0 < λ < 3/2, we can write λ = 3s2/2 for some 0 < s < 1. Consider
the functions fr = z + 1

2rz
2, where r ∈ (0, 1). The Schwarzian norm of fr

equals

(18) ∥Sfr∥ =
3

2
sup
z∈D

r2|z|2

(1− |rz|2)2
· (1− |z|2)2 ≤ 3

2
r2 .

Hence, fr ∈ F0
λ whenever r ≤ s. This implies that Rλ ≥ r = ||ω∗

r ||, where
ωr is the dilatation of fr. In particular, this implies that if λ ∈ (0, 3/2),

(19) Rλ >

√
2λ

3
.

Note that we have strict inequality in (19) since the supremum that appears
in (18) is strictly less than r2. Also, that Rλ > 0 if λ > 0.

5.2. The extremal. Let us introduce the notation α = α(Fλ) and R =
Rλ = sup{∥ω∗∥ : ω ∈ Aλ}. For λ > 0 we consider the mapping f0 = h0+ g0,
where h0 and g0 solve the linear system of equations

(20)

{
h0 − g0 = φa

ω0 = g′0/h
′
0 = ℓR

, h0(0) = g0(0) = 0 ,

where

a =

√
λ

2
+ 1 +

1

2
R2 − R

2
,

and the function φa is the generalized Koebe function defined by (1). Also,
ℓ1 is the identity mapping I and for 0 < R < 1, ℓR is the lens-map (10). Note
that h′0(0) = 1− g′0(0) = 0 and that f0 is a locally univalent mapping in the
unit disk since the dilatation is a self-map of D and h0 is locally univalent.

By (20), we have h′0(1− ℓR) = φ′
a which implies

h′′0
h′0

=
φ′′
a

φ′
a

+
ℓ′R

1− ℓR
,

so that

Sh0 = Sφa +
ℓ′′R

1− ℓR
+

1

2

(ℓ′R)
2

(1− ℓR)2
−

ℓ′R
1− ℓR

· φ
′′
a

φ′
a

,

which gives

Sh0(0) = 2(1− a2) +
R2

2
− 2aR = 2 +

R2

2
− 2aR− 2a2 .

Define the function

ψ(x) = 2 +
R2

2
− 2xR− 2x2 .
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Note that

ψ

(√
1 +

R2

2
− R

2

)
= 0 .

Also, that ψ′ < 0 which implies, since

a >

√
1 +

R2

2
− R

2
,

that ψ(a) < 0. This means that |Sh0(0)| = 2a2 + 2aR− 2−R2/2, which is
easily seen to be equal to λ. Since ω0(0) = 0, we also have that |Sf0(0)| = λ.
To show that f0 ∈ F0

λ, we just need to check λ = |Sf0(0)| = ∥Sf0∥. To do so,
we compute the Schwarzian derivative of f0 which, according to (8), equals

Sf0 = Sh0 +
ℓR

1− |ℓR|2

(
h′′0
h′0
ℓ′R − ℓ′′R

)
− 3

2

(
ℓRℓ

′
R

1− |ℓR|2

)2

= Sφa +
ℓ′′R

1− ℓR
+

1

2

(ℓ′R)
2

(1− ℓR)2
−

ℓ′R
1− ℓR

· φ
′′
a

φ′
a

(21)

+
ℓR

1− |ℓR|2

(
φ′′
a

φ′
a

ℓ′R +
(ℓ′R)

2

1− ℓR
− ℓ′′R

)
− 3

2

(
ℓRℓ

′
R

1− |ℓR|2

)2

.

Since for any complex number z,

1

1− z
− z

1− |z|2
=

1− z

(1− z)(1− |z|2)
,

we get from (21)

Sf0 = Sφa +
1− ℓR
1− ℓR

·
ℓ′′R

1− |ℓR|2
− 1− ℓR

1− ℓR
·

ℓ′R
1− |ℓR|2

· φ
′′
a

φ′
a

+
(ℓ′R)

2

2
·

[(
1 + ℓR − 2|ℓR|2

(1− ℓR)(1− |ℓR|2)

)2

− 4 ·
(

ℓR
1− |ℓR|2

)2
]

= Sφa + FR ·
(
ℓ′′R
ℓ′R

− φ′′
a

φ′
a

)
+
F 2
R

2
· 1 + 3ℓR − 4|ℓR|2

1− ℓR
,(22)

where

FR =
1− ℓR
1− ℓR

·
ℓ′R

1− |ℓR|2
.

Let us write

(23) w =

(
1 + z

1− z

)R

and β =
w

Rew
.

Then, FR(z) = Rβ/(1− z2),

ℓ′′R(z)

ℓ′R(z)
− φ′′

a(z)

φ′
a(z)

=
−2a

1− z2
+

2R

1− z2
· 1− w

1 + w
,
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and

1 + 3ℓR − 4|ℓR|2

1− ℓR
=

5Re{w} − 3(1 + iIm{w})
1 + w

=
8Re{w}
1 + w

− 3 .

Thus, we get from (22)

Sf0(z) · (1− z2)2 = 2(1− a2)− 2αRβ − 3R2β2

2

+ 2R2β · 1− w

1 + w
+ 4R2β2 · Re{w}

1 + w

= 2(1− a2) + 2R(R− a)β − 3R2β2

2
,

a formula that we use to show

|Sf0(z)| · (1− |z|2)2

=

∣∣∣∣2(1− a2) + 2R(R− a)β − 3R2β2

2

∣∣∣∣ · (1− |z|2

|1− z2|

)2

.(24)

Consider a real number γ with 0 ≤ γ < π/2 and define the curves

Cγ =

{
z ∈ D : Arg

(
1 + z

1− z

)
= γ

}
.

Note that C0 is equal to the real diameter (−1, 1) and for γ ̸= 0, Cγ is a
circular arc passing trough the points −1 and 1.

Lemma 2. The quantity |Sf0(z)| · (1 − |z|2)2 is constant on the curves Cγ,
0 ≤ γ < π/2.

Proof. Take any γ ∈ [0, π/2) and let z ∈ Cγ . Then there exists a (positive)
real number t such that

1 + z

1− z
= teiγ .

A straightforward computation gives

β =
tReiRγ

tR cos(Rγ)
= 1 + i tan(Rγ) and

1− |z|2

|1− z2|
= cos γ .

The proof of the lemma follows from (24). �
Lemma 2 shows, in particular, that whenever r ∈ (0, 1), |Sf0(r)|(1−r2)2 =

|Sf0(0)| ≡ λ .

Note that Sf0(z) = Sf0(z) for all z ∈ D. Moreover, it is easy to check

that any radius {reiθ, 0 < r < 1}, with 0 < θ < π, intersects every Cγ with
γ > 0 at exactly one point. Therefore, we conclude that

(25) ∥Sf0∥ = sup
0≤r<1

|Sf0(ir)| · (1− r2)2 .

Lemma 3. The Schwarzian norm of f0 equals

∥Sf0∥ = |Sf0(0)| = λ .
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Proof. According to (25), it suffices to show

sup
0≤r<1

|Sf0(ir)| · (1− r2)2 = |Sf0(0)| .

We use (24) to write

Φ(r) = |Sf0(ir)| · (1− |r|2)2

=

∣∣∣∣2(1− a2) + 2R(R− a)βr −
3R2β2r

2

∣∣∣∣ · (1− r2

1 + r2

)2

(26)

= |ϕ ◦ βr| ·
(
1− r2

1 + r2

)2

,

where ϕ(x) = A + Bx + Cx2, with A = 2(1 − a2), B = 2R(R − a), and
C = −3R2/2; and, by (23),

(27) βr = 1 + i tan(Rγr) with cos γr = (1− r2)/(1 + r2) .

We are to check

(28) sup{Φ(r) : 0 ≤ r < 1} = Φ(0) .

Instead of proving (28), we consider the equivalent problem of showing

(29) sup{Φ2(r) : 0 ≤ r < 1} = Φ2(0) .

The advantage of this new reformulation is that, as the reader may check,
we can write

|ϕ ◦ βr|2 = Ã+ B̃|βr|2 + C̃|βr|4 ,

with Ã = A2+2AB+4AC, B̃ = B2+2BC− 2AC, and C̃ = C2. Note that

Ã+ B̃ + C̃ = λ2. In fact,

(30) Ã = 4(1− a2)
(
1− (a+R)2

)
(with a+R > 1, by the definition of a),

(31) B̃ = 2R2(3− aR− a2 −R2) , and C̃ =
9R4

4
.

Notice that by (27), the mapping r → γr is increasing for r ∈ (0, 1), and
that |βr| = 1/ cos(Rγr).

Let us rename Ψ(r) = Φ2(r). To prove (29), we distinguish among the
following three cases.

(i)λ = 3/2. In this case, by Theorem 3, R = 1. We also have a = 1,

which gives A = B = 0, C = −3/2 and therefore, Ã = B̃ = 0, C̃ = 9/4.
Hence

Ψ(r) =
(
Ã+ B̃|βr|2 + C̃|βr|4

)
· cos4 γr =

9

4
· 1

cos4 γr
· cos4 γr =

9

4
= λ2 .

This proves that (29) holds for λ = 3/2.
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(ii)λ > 3/2. By Theorem 3, we have R = 1. A straightforward calcula-
tion shows that a > 1. Hence, using (30) and that a + R > 1, we obtain

Ã > 0. Now, since |βr| = 1/ cos γr, we can write

Ψ(r) =
(
Ã+ B̃|β|2 + C̃|β|4

)
· cos4 γr =

(
Ã

|β|4
+

B̃

|β|2
+ C̃

)
= Ã cos4(γr) + B̃ cos2(γr) + C̃ .

Consider the function ψ(x) = Ãx2 + B̃x+ C̃, x ∈ (0, 1). Note that Ψ(r) =
ψ(cos2(γr)) and that Ψ(r) ≤ Ψ(0) if and only if ψ(x) ≤ ψ(1). To show that
ψ(x) ≤ ψ(1) we argue as follows: the graph of ψ is a convex parabola and
ψ(1) = λ2 > 9/4 = ψ(0) since λ > 3/2. Hence, the unique critical point x0
of ψ is a minimum and satisfies x0 < 1. We have the following possibilities.

(i) The critical point x0 ≤ 0, which implies that for all r ∈ [0, 1), ψ(r) ≤
ψ(1) = λ2.

(ii) The critical point x0 which is a minimum of ψ belongs to (0, 1). In
this case, we have

sup
0≤x≤1

ψ(x) = max{ψ(0), ψ(1)} = max

{
9

4
, λ2
}

= λ2 = ψ(1) ,

which shows that (29) holds also for λ > 3/2.

(iii)λ < 3/2. This is the most complicated case to analyze by far due to
the amount of parameters that we are to control. Note that we have that
R < 1 by Theorem 3, and that a < 1 by (19). Hence, using (30) and (31),

we have that Ã < 0, while B̃, C̃ > 0. Recall that βr = 1 + i tan(Rγr) and
that cos γr = (1− r2)/(1+ r2), which gives that |βr| = 1/ cos(Rγr) and that
the correspondence r → γr is an (strictly) increasing function in r ∈ (0, 1)
(and hence γ′r = ∂γr/∂r > 0 for all such r).

We are to show that sup0≤r<1Ψ(r) = Ψ(0). To do so, we will check that
the derivative of Ψ is non-positive for all such r. For the convenience of the
reader, we proceed in different steps.

Step 1: There exists r1 ∈ (0, 1) such that Ψ′(r) < 0 for all r ∈ (0, r1).
As it was mentioned before, we can write

Ψ(r) =
(
Ã+ B̃|βr|2 + C̃|βr|4

)
· cos4 γr .

Using this expression for Ψ, we compute its derivative to obtain

Ψ′(r) =
(
2B̃|βr|+ 4C̃|βr|3

)
· sin(Rγr)

cos2(Rγr)
·Rγ′r · cos4 γr

−
(
Ã+ B̃|βr|2 + C̃|βr|4

)
· 4 cos3 γr · sin γr · γ′r ,
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which can be written as

Ψ′(r) = −γ′r ·
cos4 γr · tan γr

cos(Rγr)
(32)

×
(
4Ã cos(Rγr) + 2B̃|βr|+ 2B̃φr|βr|+ 4C̃φr|βr|3

)
,

where

φr = 1− R tan(Rγr)

tan γr
.

Let us see that φr is an (strictly) increasing function of r ∈ (0, 1). To do so,
we compute the derivative of this function which is

φ′
r = − Rγ′r

tan2 γr · cos γr · cos(Rγr)
·
(
R sin γr
cos(Rγr)

− sin(Rγr)

cos γr

)
.

Now, φr is increasing if and only if

(33)
R sin γr
cos(Rγr)

<
sin(Rγr)

cos γr
⇔ R sin(2γr)− sin(2Rγr) < 0 .

Define µ(r) = R sin(2γr)− sin(2Rγr), r ∈ (0, 1). Then µ(0) = 0 and

µ′(r) = 2R(cos(2γr)− cos(2Rγr)) · γ′r < 0

since 0 < R < 1, which gives (33) and shows that φr is increasing for all
r ∈ (0, 1).

It is also clear that cos(Rγr) is decreasing in r so that 1/ cos(Rγr) = |βr|
is increasing as well. Hence, the expression in the parentheses in (32) is an

increasing function of r ∈ (0, 1) (recall that Ã < 0 and that B̃, C̃ > 0). On
the other hand, cos4 γr · tan γr increases with r for all 0 < r < r1, where
sin(γr1) = 1/2. This shows that as long as 0 < r < r1, the function

φ̃(r) = −cos4 γr · tan γr
cos(Rγr)

·
(
4Ã cos(Rγr) + 2B̃|βr|+ 2B̃φr|βr|+ 4C̃φr|βr|3

)
is decreasing. Since φ̃(0) = 0, we get that φ̃(r) < 0 for all r ∈ (0, r1). In
other words, keeping in mind that γ′r > 0 for all r ∈ (0, 1), we conclude from
(32) that Ψ′(r) < 0 for r ∈ (0, r1). (This implies, in particular, that r = 0
is a local maximum of Ψ.)

Step 2: There exists r2 ∈ (0, 1) such that Ψ′(r) < 0 for all r ∈ (r2, 1).
Recall that

λ = 2a2 + 2aR− 2−R2/2 .
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Using (26) and (27), we get

Ψ(r) =

∣∣∣∣2(1− a2) + 2R(R− a)βr −
3R2β2r

2

∣∣∣∣2 · (1− r2

1 + r2

)4

=

(
Re

{
2(1− a2) + 2R(R− a)βr −

3R2β2r
2

})2

· cos4 γr

+

(
Im

{
2(1− a2) + 2R(R− a)βr −

3R2β2r
2

})2

· cos4 γr

=

(
−λ+

3R2

2
· tan2(Rγr)

)2

· cos4 γr

+
(
R2 + 2aR

)2 · tan2(Rγr) · cos4 γr
(34) = λ2 ·cos4 γr+K · tan2(Rγr) ·cos4 γr+

9R4

4
· tan4(Rγr) ·cos4 γr ,

where

K = R4 + 4a2R2 + 4aR3 − 3R2λ =
5R4

2
+ 6R2 − 2a2R2 − 2aR3

≥ 5R4

2
+ 2R2 > 0 ,

since a and R are less than one. Using (34) we see that the derivative of Ψ
with respect to r equals

Ψ′(r) = −4λ2 · cos3 γr · sin γr · γ′r +K · 2R tan(Rγr)

cos2(Rγr)
· cos4 γr · γ′r

− 4K · cos3 γr · sin γr · tan2(Rγr) · γ′r + 9R5 · tan
3(Rγr)

cos2(Rγr)
· cos4 γr · γ′r

− 9R4 tan4(Rγr) · cos3 γr · sin γr · γ′r .

Note that Ψ′(r) < 0 if and only if

K · 2R tan(Rγr)

cos2(Rγr)
· cos γr + 9R5 · tan

3(Rγr)

cos2(Rγr)
· cos γr

< 4λ2 · sin γr + 4K · sin γr · tan2(Rγr) + 9R4 tan4(Rγr) · sin γr ,(35)

an inequality the holds for all r ≥ r2, say, since as r → 1 (or, equivalently, as
γr → π/2), the right hand side in (35) goes to 0 while the left hand side tend
to a strictly positive real number. In other words, this shows that Ψ′(r) < 0
for all r ∈ (r2, 1).

Step 3: Ψ has at most one critical point in (0, 1). Note that once
we check that the number of solutions of the equation Ψ′(r) = 0, r ∈ (0, 1)
is at most one, we will have, as a consequence of the previous steps that
Ψ′(r) ≤ 0 for r ∈ (0, 1) (and hence Ψ is non-increasing in that interval).
Observe that Ψ′ = 0 if and only if the function in the parentheses in (32) is
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equal to zero. As was justified in Step 1, this function is increasing, which
proves our claim. �

We summarize the previous analysis in the following proposition.

Proposition 1. If λ > 0 then the function f0 ∈ F0
λ.

This shows that (15) and (16) are equalities, and finishes the proof of
Theorem 1.
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